                                       Семинарское занятие 2 (MATLAB)
Тема: Наивный Байес / гауссов классификатор. Confusion matrix (матрица ошибок).
Цель занятия
1) Обучить классификатор Naive Bayes (в т.ч. Gaussian Naive Bayes). 2) Обучить гауссов классификатор (LDA/QDA как генеративную гауссову модель). 3) Оценить качество по confusion matrix и метрикам (accuracy, precision, recall, F1).
Входные данные (датасет)
Используйте один из вариантов:
A) Встроенный датасет Iris (3 класса) — удобен для визуализации.
B) Свой CSV/Excel-датасет (2–5 классов).
Задание (что нужно сделать)
1. Загрузить данные, выделить X (признаки) и y (метки классов).
2. Сделать train/test split (например, 80/20) с фиксированным seed и желательно со стратификацией по классам.
3. Обучить Naive Bayes (fitcnb) и получить предсказания на test.
4. Обучить гауссов классификатор: LDA (линейный) и/или QDA (квадратичный) через fitcdiscr.
5. Построить confusion matrix для каждой модели и посчитать метрики.
6. Сравнить модели: где ошибок больше, какие классы путаются, почему (короткий вывод 5–8 строк).
Что сдавать
1) MATLAB-скрипт Seminar2_NB_Gaussian.m
2) Отчёт 1–2 страницы (PDF/Word): датасет, split, 2–3 скриншота confusion matrix, таблица метрик, вывод.
3) (Опционально) сохранённые результаты в .mat
Критерии оценивания (макс. 15 баллов)
• Корректная подготовка данных и split — 4 б.
• Naive Bayes: обучение + прогноз — 3 б.
• Гауссов классификатор (LDA/QDA) — 3 б.
• Confusion matrix + метрики — 4 б.
• Краткий анализ ошибок — 1 б.
Бонус +2 б: сравнение LDA vs QDA + кросс-валидация (5-fold).
Шаблон кода MATLAB (можно копировать и запускать)
%% Seminar 2: Naive Bayes / Gaussian classifier + Confusion Matrix
% Тема: Naive Bayes (Gaussian NB), LDA/QDA (Gaussian classifier), confusion matrix
rng(42);  % фиксируем seed

%% 1) Данные (Вариант A: Iris)
load fisheriris
X = meas;                      % 150x4
y = categorical(species);      % 150x1 (setosa/versicolor/virginica)

% Если у вас свой датасет:
% T = readtable("data.csv");
% y = categorical(T.Label);
% X = table2array(T(:, setdiff(T.Properties.VariableNames, {'Label'})));

%% 2) Train/Test split (80/20) со стратификацией
cv = cvpartition(y,'Holdout',0.2);   % для categorical обычно стратифицирует
idxTr = training(cv);
idxTe = test(cv);

Xtr = X(idxTr,:);  ytr = y(idxTr);
Xte = X(idxTe,:);  yte = y(idxTe);

%% 3) Naive Bayes (Gaussian NB по умолчанию для числовых признаков)
mdlNB = fitcnb(Xtr, ytr);            % Naive Bayes
yhatNB = predict(mdlNB, Xte);

%% 4) Gaussian classifier: LDA / QDA (fitcdiscr)
mdlLDA = fitcdiscr(Xtr, ytr, 'DiscrimType','linear');     % LDA (общая ковариация)
yhatLDA = predict(mdlLDA, Xte);

mdlQDA = fitcdiscr(Xtr, ytr, 'DiscrimType','quadratic');  % QDA (разные ковариации)
yhatQDA = predict(mdlQDA, Xte);

%% 5) Confusion matrix + метрики
% 5.1 Confusion matrices
cmNB  = confusionmat(yte, yhatNB);
cmLDA = confusionmat(yte, yhatLDA);
cmQDA = confusionmat(yte, yhatQDA);

disp("Confusion Matrix (NB):");  disp(cmNB);
disp("Confusion Matrix (LDA):"); disp(cmLDA);
disp("Confusion Matrix (QDA):"); disp(cmQDA);

% 5.2 Визуализация (MATLAB R2018b+)
figure; confusionchart(yte, yhatNB);  title("Naive Bayes: Confusion Matrix");
figure; confusionchart(yte, yhatLDA); title("LDA: Confusion Matrix");
figure; confusionchart(yte, yhatQDA); title("QDA: Confusion Matrix");

% 5.3 Метрики (macro-precision/recall/F1 + accuracy)
metricsNB  = computeMetrics(cmNB);
metricsLDA = computeMetrics(cmLDA);
metricsQDA = computeMetrics(cmQDA);

disp("Metrics NB:");  disp(metricsNB);
disp("Metrics LDA:"); disp(metricsLDA);
disp("Metrics QDA:"); disp(metricsQDA);

%% 6) (Опционально) 5-fold cross-validation для сравнения
% cvNB  = crossval(mdlNB,  'KFold', 5);  lossNB  = kfoldLoss(cvNB);
% cvLDA = crossval(mdlLDA, 'KFold', 5);  lossLDA = kfoldLoss(cvLDA);
% cvQDA = crossval(mdlQDA, 'KFold', 5);  lossQDA = kfoldLoss(cvQDA);

%% ===== Вспомогательная функция метрик =====
function S = computeMetrics(CM)
% CM: confusion matrix (KxK), строки = true, столбцы = predicted
K = size(CM,1);
tp = diag(CM);
fp = sum(CM,1)' - tp;
fn = sum(CM,2)  - tp;

precision = tp ./ max(tp+fp, 1);
recall    = tp ./ max(tp+fn, 1);
f1        = 2*(precision.*recall) ./ max(precision+recall, 1e-12);

acc = sum(tp) / max(sum(CM(:)), 1);

S = table((1:K)', precision, recall, f1, 'VariableNames', ...
    {'ClassIndex','Precision','Recall','F1'});

S.Properties.Description = sprintf('Accuracy = %.4f, MacroF1 = %.4f', acc, mean(f1,'omitnan'));
fprintf('Accuracy = %.4f | MacroPrecision = %.4f | MacroRecall = %.4f | MacroF1 = %.4f\n', ...
    acc, mean(precision,'omitnan'), mean(recall,'omitnan'), mean(f1,'omitnan'));
end

Примечания
• Для своих данных замените блок загрузки (readtable) и название столбца меток Label.
• Если классов 2 и датасет несбалансирован, обязательно сравните precision/recall, а не только accuracy.
• Для отчёта приложите 2–3 коротких вывода: какие классы путаются и почему (по признакам/перекрытию).
